title
Please take a moment to fill out this form. We will get back to you as soon as possible.
All fields marked with an asterisk (*) are mandatory.
The Machine Learning Pipeline on AWS
AWS Training Pass
Take advantage of flexible training options with the AWS Training Pass and get Authorized AWS Training for a full year.
Learn More
Course Description
Overview
This course explores how to the use of the iterative machine learning (ML) process pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the process pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem. Learners with little to no machine learning experience or knowledge will benefit from this course. Basic knowledge of Statistics will be helpful.- Duration: 4 days
Objectives
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model using Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
Audience
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
Prerequisites
-
We recommend that attendees of this course have:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
Topics
- Module 0: Introduction
- Pre-assessment
- Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
- Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Hands-on: Amazon SageMaker and Jupyter notebooks
- Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Practice problem formulation
- Formulate problems for projects
- Checkpoint 1 and Answer Review
- Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Practice preprocessing
- Preprocess project data
- Class discussion about projects
- Checkpoint 2 and Answer Review
- Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
- Module 6: Model Evaluation
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Initial project presentations
- Checkpoint 3 and Answer Review
- Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
- Practice feature engineering and model tuning
- Apply feature engineering and model tuning to projects
- Final project presentations
- Module 8: Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
- Demo: Creating an Amazon SageMaker endpoint
- Post-assessment
- Course wrap-up
Related Courses
-
Deep Learning on AWS
AWS-170- Duration: 1 Day
- Delivery Format: Classroom Training, Online Training
- Price: 675.00 USD
-
Practical Data Science with Amazon SageMaker
AWS-175- Duration: 1 Day
- Delivery Format: Classroom Training, Online Training
- Price: 675.00 USD
Self-Paced Training Info
Learn at your own pace with anytime, anywhere training
- Same in-demand topics as instructor-led public and private classes.
- Standalone learning or supplemental reinforcement.
- e-Learning content varies by course and technology.
- View the Self-Paced version of this outline and what is included in the SPVC course.
- Learn more about e-Learning
Course Added To Shopping Cart
bla
bla
bla
bla
bla
bla
Self-Paced Training Terms & Conditions
Sorry, there are no classes that meet your criteria.
Please contact us to schedule a class.

STOP! Before You Leave
Save 0% on this course!
Take advantage of our online-only offer & save 0% on any course !
Promo Code skip0 will be applied to your registration