title
Please take a moment to fill out this form. We will get back to you as soon as possible.
All fields marked with an asterisk (*) are mandatory.
MLOps Engineering on AWS
AWS Training Pass
Take advantage of flexible training options with the AWS Training Pass and get Authorized AWS Training for a full year.
Learn More
Course Description
Overview
This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.- Duration: 3 days
Objectives
- Explain the benefits of MLOps
- Compare and contrast DevOps and MLOps
- Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
- Set up experimentation environments for MLOps with Amazon SageMaker
- Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
- Describe three options for creating a full CI/CD pipeline in an ML context
- Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
- Demonstrate how to monitor ML based solutions
- Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data
Audience
- MLOps engineers who want to productionize and monitor ML models in the AWS cloud
- DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production
Prerequisites
-
We recommend that attendees of this course have:
- AWS Technical Essentials (classroom or digital)
- DevOps Engineering on AWS, or equivalent experience
- Practical Data Science with Amazon SageMaker, or equivalent experience
Topics
- Processes
- People
- Technology
- Security and governance
- MLOps maturity model
- Bringing MLOps to experimentation
- Setting up the ML experimentation environment
- Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
- Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
- Workbook: Initial MLOps
- Managing data for MLOps
- Version control of ML models
- Code repositories in ML
- ML pipelines
- Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines
- End-to-end orchestration with AWS Step Functions
- Hands-On Lab: Automating a Workflow with Step Functions
- End-to-end orchestration with SageMaker Projects
- Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
- Using third-party tools for repeatability
- Demonstration: Exploring Human-in-the-Loop During Inference
- Governance and security
- Demonstration: Exploring Security Best Practices for SageMaker
- Workbook: Repeatable MLOps
- Scaling and multi-account strategies
- Testing and traffic-shifting
- Demonstration: Using SageMaker Inference Recommender
- Hands-On Lab: Testing Model Variants
- Hands-On Lab: Shifting Traffic
- Workbook: Multi-account strategies
- The importance of monitoring in ML
- Hands-On Lab: Monitoring a Model for Data Drift
- Operations considerations for model monitoring
- Remediating problems identified by monitoring ML solutions
- Workbook: Reliable MLOps
- Hands-On Lab: Building and Troubleshooting an ML Pipeline
Related Courses
-
Practical Data Science with Amazon SageMaker
AWS-175- Duration: 1 Day
- Delivery Format: Classroom Training, Online Training
- Price: 675.00 USD
-
Amazon SageMaker Studio for Data Scientists
AWS-300- Duration: 3 Days
- Delivery Format: Classroom Training, Online Training
- Price: 2,025.00 USD
Self-Paced Training Info
Learn at your own pace with anytime, anywhere training
- Same in-demand topics as instructor-led public and private classes.
- Standalone learning or supplemental reinforcement.
- e-Learning content varies by course and technology.
- View the Self-Paced version of this outline and what is included in the SPVC course.
- Learn more about e-Learning
Course Added To Shopping Cart
bla
bla
bla
bla
bla
bla
Self-Paced Training Terms & Conditions
Exam Terms & Conditions
Sorry, there are no classes that meet your criteria.
Please contact us to schedule a class.
STOP! Before You Leave
Save 0% on this course!
Take advantage of our online-only offer & save 0% on any course !
Promo Code skip0 will be applied to your registration
Purchase Information
title
Please take a moment to fill out this form. We will get back to you as soon as possible.
All fields marked with an asterisk (*) are mandatory.