title
Please take a moment to fill out this form. We will get back to you as soon as possible.
All fields marked with an asterisk (*) are mandatory.
Deep Learning and Reinforcement Learning
Course Description
Overview
This course introduces you to two of the most sought-after disciplines in Machine Learning: Deep Learning and Reinforcement Learning. Deep Learning is a subset of Machine Learning that has applications in both Supervised and Unsupervised Learning, and is frequently used to power most of the AI applications that we use on a daily basis. First you will learn about the theory behind Neural Networks, which are the basis of Deep Learning, as well as several modern architectures of Deep Learning. Once you have developed a few Deep Learning models, the course will focus on Reinforcement Learning, a type of Machine Learning that has caught up more attention recently. Although currently Reinforcement Learning has only a few practical applications, it is a promising area of research in AI that might become relevant in the near future. After this course, if you have followed the courses of the IBM Specialization in order, you will have considerable practice and a solid understanding in the main types of Machine Learning which are: Supervised Learning, Unsupervised Learning, Deep Learning, and Reinforcement Learning.
Objectives
By the end of this course you should be able to:- Explain the kinds of problems suitable for Unsupervised Learning approaches.
- Explain the curse of dimensionality, and how it makes clustering difficult with many features.
- Describe and use common clustering and dimensionality-reduction algorithms.
- Try clustering points where appropriate, compare the performance of per-cluster models.
- Understand metrics relevant for characterizing clusters
Prerequisites
To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Data Cleaning, Exploratory Data Analysis, Unsupervised Learning, Supervised Learning, Calculus, Linear Algebra, Probability, and Statistics.
Related Courses
-
IBM Cloud Pak for Data (V2.5.x): Foundations
6X236GW- Duration: 6.5 Hours
- Delivery Format: Self-Paced Training (WBT)
- Price: 245.00 USD
-
IBM Cloud Pak for Data: Administration
6XA100GW- Duration: 6 Hours
- Delivery Format: Self-Paced Training (WBT)
- Price: 245.00 USD
Self-Paced Training Info
Learn at your own pace with anytime, anywhere training
- Same in-demand topics as instructor-led public and private classes.
- Standalone learning or supplemental reinforcement.
- e-Learning content varies by course and technology.
- View the Self-Paced version of this outline and what is included in the SPVC course.
- Learn more about e-Learning
Course Added To Shopping Cart
bla
bla
bla
bla
bla
bla
Self-Paced Training Terms & Conditions
IBM Web Based Training courses are sold on a per-user basis. WBT courses provide a training advantage for you and your teams, helping you get up to speed quickly. Take the courses you need, at your convenience and at your own pace.
You can start the course at any time within 12 months of enrolling for the course. After you register/start the course, you have 30 days to complete your course. Within this 30 days, the self-paced format gives you the opportunity to complete the course at your convenience, at any location, and at your own pace. The course is available 24 hours a day.
System Requirements
To participate in this course, the student workstation must meet the following hardware requirements:- Minimum of 256 MB of memory
- Windows Vista or Windows 7-10 (32-bit or 64-bit edition)
- Internet Explorer 6 or higher or Firefox ESR
- 128-bit encryption
- Citrix Receiver for connection to the IBM Remote Lab Platform
- Java
- Access to Internet with at least 128 kbps down and 128 kbps up
- Other platforms/combinations may work but are not officially supported by IBM.
Exam Terms & Conditions
Sorry, there are no classes that meet your criteria.
Please contact us to schedule a class.
STOP! Before You Leave
Save 0% on this course!
Take advantage of our online-only offer & save 0% on any course !
Promo Code skip0 will be applied to your registration
Purchase Information
title
Please take a moment to fill out this form. We will get back to you as soon as possible.
All fields marked with an asterisk (*) are mandatory.