Close
Contact Us info@learnquest.com

??WelcomeName??
??WelcomeName??
« Important Announcement » Contact Us 877-206-0106 | USA Flag
Close
Close
Close
photo

Thank you for your interest in LearnQuest.

Your request is being processed and LearnQuest or a LearnQuest-Authorized Training Provider will be in touch with you shortly.

photo

Thank you for your interest in Private Training.

We look forward to helping you develop the perfect training solution to help you meet your company's goals.

For immediate assistance, speak with one of our representatives using the chat module below. Otherwise, LearnQuest or a LearnQuest-Authorized Training Provider will be in touch with you shortly.

Close
photo

Thank you for your interest in LearnQuest!

Now, you will be able to stay up-to-date on our latest course offerings, promotions, and training discounts. Watch your inbox for upcoming special offers.

title

Date: xxx

Location: xxx

Time: xxx

Price: xxx

Please take a moment to fill out this form. We will get back to you as soon as possible.

All fields marked with an asterisk (*) are mandatory.

PyTorch in Practice: An Applications-First Approach (LFD473)

Price
3,260 USD
4 Days
LNX-LFD473
Classroom Training, Online Training
Linux Foundation

AWS Training Pass

Take advantage of flexible training options with the AWS Training Pass and get Authorized AWS Training for a full year.

Learn More

Prices reflect a 22.5% discount for IBM employees (wherever applicable).
Prices reflect a 24% discount for Kyndryl employees (wherever applicable).
Prices reflect the Accenture employee discount.
Prices shown are the special AWS Partner Prices.
Prices reflect the Capgemini employee discount.
Prices reflect the UPS employee discount.
Prices reflect the ??democompanyname?? employee discount.
GSA Private/Onsite Price: ??gsa-private-price??
For GSA pricing, please go to GSA Advantage.
 

Class Schedule

Delivery Formats

Sort results

Filter Classes

Guaranteed to Run

Modality

Location

Language

Date

  • Date: 10-Mar-2025 to 13-Mar-2025
    Time: 9:00 ETAM - 5:00 ETPM US Eastern
    Location: Virtual
    Language: English
    Delivered by: LearnQuest
    Price: 3,260 USD
View Global Schedule

Course Description

Overview

Start prototyping AI applications powered by PyTorch, one of the most popular deep learning frameworks, by leveraging popular pretrained models in the fields of Computer Vision and Natural Language Processing covering an extensive span of practical applications.

PyTorch in Practice: An Applications-First Approach (LFD473) is designed for machine learning practitioners who want to add deep learning models in PyTorch to their skill set. After successfully completing the course you will be able to fine tune deep learning models using PyTorch and Hugging Face ecosystems of pre-trained models for Computer Vision and Natural Language Processing tasks. Additionally, you will be able to deploy prototype applications using TorchServe, allowing you to quickly validate and demo applications.

“AI skills are in high demand and short supply,” said Clyde Seepersad, SVP, General Manager, Training & Certification, Linux Foundation. “Adding PyTorch to your profile will significantly enhance your employability for the coming decade.”

This course provides hands-on experience to train and fine-tune deep learning models using the rich PyTorch and Hugging Face ecosystems of pre-trained models for Computer Vision and Natural Language Processing tasks. Additionally, you will be able to deploy prototype applications using TorchServe, allowing you to quickly validate and demo your application.
 

Objectives

The course begins with an overview of PyTorch, including model classes, datasets, data loaders and the training loop. Next the role and power of transfer learning is addressed along with how to use it with pretrained models. Practical lab exercises cover multiple topics including image classification, object detection, sentiment analysis, text classification, and text generation/completion. Learners also will use their data to fine-tune existing models and leverage third-party APIs.
 

Audience

This course is designed for machine learning practitioners who want to add deep learning models in PyTorch - especially pretraining models for Computer Vision and Natural Language Processing - to quickly protype and deploy applications.
 

Prerequisites

    While there are no formal prerequisites, students should have some knowledge of Python (notions of object-oriented programming), PyData Stack (Numpy, Pandas, Matplotlib, Scikit-Learn), and Machine Learning concepts (supervised learning, loss functions, train-validation-test split, evaluation metrics).
     

Topics

Introduction
  • Who You Are
  • Who we are
  • Copyright and No Confidential Information
  • Training
  • Certification Programs and Digital Badging
PyTorch, Datasets, and Models
  • What is PyTorch
  • The PyTorch Ecosystem
  • Supervised vs Unsupervised Learning
  • Software Development vs Machine and Deep Learning
  • ``Hello Model'
  • Naming Is Hard
  • Setup and Environment
Building Your First Dataset
  • Tensors, Devices, and CUDA
  • Datasets
  • Dataloaders
  • Datapipes
  • Lab 1A: Non-Linear Regression
Training Your First Model
  • Recap
  • Models
  • Loss Functions
  • Gradients and Autograd
  • Optimizers
  • The Raw Training Loop
  • Evaluation
  • Saving and Loading Models
  • NonLinearities
  • Lab 1B: Non-Linear Regression
Building Your First Datapipe
  • A New Dataset
  • Lab 2: Price Prediction
  • Tour of High Level Libraries
Transfer Learning and Pretrained Models
  • What is Transfer Learning?
  • Torch Hub
  • Computer Vision
  • Dropout
  • ImageFolder Dataset
  • Lab 3: Classifying Images
Pretrained Models for Computer Vision
  • PyTorch Image Models
  • HuggingFace
Natural Language Processing
  • Natural Language Processing
  • One Logit or Two Logits?
  • Cross-Entropy Loss
  • TensorBoard
  • Lab 4: Sentiment Analysis
  • Hugging Face Pipelines
  • Generative Models
Image Classification with Torchvision
  • Torchvision
  • Pretrained Models as Feature Extractors
Fine-Tuning Pretrained Models for Computer Vision
  • Fine Tuning Pretained Models
  • Zero-shot Image Classification
Serving Models with TorchServe
  • Archiving and Serving Models
  • TorchServe
Datasets and Transformations for Object Detection and Image Segmentation
  • Object Detection, Image Segmentation, and Keypoint Detection
  • Bounding Boxes
  • Torchvision Operators
  • Transforms (V2)
  • Custom Dataset for Object Detection
  • ab 5A: Fine-Tuning Object Detection Models
Models for Object Detection and Image Segmentation
  • Models
  • Lab 5B: Fine-Tuning Object Detection Models
Models for Object Detection Evaluation
  • Recap
  • Making Predictions
  • Evaluation
  • YOLO
  • HuggingFace Pipelines for Object Detection
  • Zero-Shot Object Detection
Word Embeddings and Text Classification
  • Torchtext
  • AG News Dataset
  • Tokenization
  • Embeddings
  • Vector Databases
  • Zero-Shot Text Classification
  • Chunking Strategies
  • Lab 6: Text Classification using Embeddings
Contextual Word Embeddings with Transformers
  • Attention is All You Need
  • Transformer
  • An Encoder-Based Model for Classification
  • Contextual Embeddings
Huggingface Pipelines for NLP Tasks
  • HuggingFace Pipelines
  • Lab 7: Document Q&A
Question and Answer, Summarization, and LLMs
  • EDGAR Dataset
  • Hallucinations
  • Asymmetric Semantic Search
  • ROUGE Score
  • Decoder-Based Models
  • Large Language Models (LLMs)
Closing and Evaluation Survey
  • Evaluation Survey
Top 20 Training Industry Company - IT Training

Need Help?

Call us at 877-206-0106 or e-mail us at info@learnquest.com

Personalized Solutions

Need a personalized solution for your Training? Contact us, and one of our training advisors will help you find the best solution.

Contact Us

Need Help?

Do you have a question about the courses, instruction, or materials covered? Do you need help finding which course is best for you? We are here to help!

Talk to us

LearnPass Year-End Offer

Get Up to 25% Additional Training Funds Before the Year Ends!

Act Now

Self-Paced Training Info

Learn at your own pace with anytime, anywhere training

  • Same in-demand topics as instructor-led public and private classes.
  • Standalone learning or supplemental reinforcement.
  • e-Learning content varies by course and technology.
  • View the Self-Paced version of this outline and what is included in the SPVC course.
  • Learn more about e-Learning

Course Added To Shopping Cart

bla

bla

bla

bla

bla

bla

Self-Paced Training Terms & Conditions

??spvc-wbt-warning??

Exam Terms & Conditions

??exam-warning??
??group-training-form-area??
??how-can-we-help-you-area??
??personalized-form-area??
??request-quote-area??

Sorry, there are no classes that meet your criteria.

Please contact us to schedule a class.
Close

self-paced
STOP! Before You Leave

Save 0% on this course!

Take advantage of our online-only offer & save 0% on any course !

Promo Code skip0 will be applied to your registration

Close
Nothing yet
here's the message from the cart

To view the cart, you can click "View Cart" on the right side of the heading on each page
Add to cart clicker.

Purchase Information

??elearning-coursenumber?? ??coursename??
View Cart

title

Date: xxx

Location: xxx

Time: xxx

Price: xxx

Please take a moment to fill out this form. We will get back to you as soon as possible.

All fields marked with an asterisk (*) are mandatory.

If you would like to request a quote for 5 or more students, please contact CustomerService@learnquest.com to be assigned an account representative.

Need more Information?

Speak with our training specialists to continue your learning journey.

 

Delivery Formats

Close

By submitting this form, I agree to LearnQuest's Terms and Conditions

heres the new schedule
This website uses third-party profiling cookies to provide services in line with the preferences you reveal while browsing the Website. By continuing to browse this Website, you consent to the use of these cookies. If you wish to object such processing, please read the instructions described in our Privacy Policy.
Your use of this LearnQuest site affirms your consent to our use of session and persistent cookies to track how you use our website.