

Getting Started with IBM Bluemix

Hands-On Workshop

Exercise 6a: Adding a Service
to an Application

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

3

Adding a service to an application
In this exercise, you’ll extend the FizzBuzz implementation to cache results to a NoSQL
database.

When a range is requested, the database will be searched to see whether this request was
previously saved. If a request was saved, the FizzBuzz result will be returned from the
database. If the range was not previously saved, it will be calculated and saved to the database
for future requests. Then, the results will be sent to the requesting user.

For this exercise, you’ll use the Cloudant database service from Bluemix. You must add an
instance to the application that is running on Bluemix.

1. Create the Cloudant service for the application:
a. In the Bluemix web UI, select your application from the dashboard.

b. From the Overview page of your Bluemix application, click ADD A SERVICE OR

API.

c. Enter Cloudant into the search bar and click the Cloudant NoSQL DB under

Data Management.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

4

d. Use the default values. However, you can provide your own service name so that

you can associate the service name with your application.

e. Click CREATE to create and bind the database to your application.

f. Restage the application to make it available to the application by clicking
RESTAGE.

Wait until the application finishes restaging and is running again.

2. Configure the database for the FizzBuzz application:

a. Launch the Cloudant console by clicking the Cloudant service from the application
Overview page.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

5

b. Click LAUNCH from top right of Cloudant Dashboard.

c. After the Cloudant console loads, click Add New Database from the top menu.

d. Enter fizzbuzz as the database name.

e. Click Create.

3. Create a view to be able to search for documents with a given range [from, to]:
a. Click the plus sign (+) next to All Design Docs.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

6

b. In the Create new index dialog, enter the following values:

 fb as the Design Document name

 range as the Index name

c. Change the Map function to the following code:

function(doc) {

 emit([doc.from,doc.to], null);

}

d. Click Save & Build Index.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

7

The database is now ready to receive documents.

To use Cloudant in Node.js, there are a number of options from making direct REST API
calls against the Cloudant API to using one of the libraries. In this exercise, you’ll use the
Cloudant library.

4. Add the Cloudant library to the Eclipse project:

a. In Eclipse in the Terminals view, stop Mocha if it’s still running: Ctrl+C.

b. Enter the following command:

npm install cloudant@1.0.0 --save --save-exact

This command ensures that version 1.0.0 is used and is entered in the

package.json file to use exactly 1.0.0, not 1.0.0 or later.

For this exercise, you’ll create a new route in the server so that you have access to the
caching and noncaching versions of the API.

5. Create the files that are needed to start implementing the caching version of the API:

a. Right-click the project name in the Project Explorer view and click New > File.

Name the file cachefizzbuzz.js.

b. Enter the following code in the file and then save the file:

var FizzBuzz = require("./fizzbuzz");

var CacheFizzBuzz = function(dbURL) {

 this._dbURL = dbURL;

 this._Cloudant = require("cloudant")(dbURL);

 this._fizzbuzz = new FizzBuzz();

};

module.exports = CacheFizzBuzz;

c. Right-click the test directory in the Project Explorer view and click File > New.

Name the file cachefizzbuzz.test.js.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

8

d. Enter the following content in the cachefizzbuzz.test.js file and then save

the file:

var sinon = require("sinon");

var CacheFizzBuzz = require("../cachefizzbuzz.js");

To use the Cloudant database in the application, use the VCAP_SERVICES environment
variable to get access to the database location and credentials. See the value of the
environment variable in the Bluemix web UI.

For the Cloudant library, only the URL is needed from the credentials section.

6. Parse the VCAP_SERVICES variable and extract the URL. If the application is not
running on Bluemix, create a local URL:

a. Add the following code to the server.js file:

 Add code to parse the VCAP_SERVICES and extract the database URL
under the existing code to obtain the server host and port values.

 Add a new variable named CacheFizzBuzz and initialize it with
require("./cachfizzbuzz");

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

9

The top of the server.js file should now contain this code:

var express = require("express");

var app = express();

var FizzBuzz = require("./fizzbuzz");

var CacheFizzBuzz = require("./cachefizzbuzz");

var server_port = process.env.VCAP_APP_PORT || 3000;

var server_host = process.env.VCAP_APP_HOST || "localhost";

var dbURL = "";

if (process.env.VCAP_SERVICES) {

 var env = JSON.parse(process.env.VCAP_SERVICES);

 dbURL = env.cloudantNoSQLDB[0].credentials.url + "/fizzbuzz";

} else dbURL = "http://localhost:5984/fizzbuzz";

This code uses the database name fizzbuzz.

b. In the server.js file, add the new route to the server. After the code that

defines the /fizzbuzz_range route, add the following code:

app.get("/cache_fizzbuzz_range/:from/:to", function (req, res) {

 var cachefizzbuzz = new CacheFizzBuzz(dbURL);

 var from = req.params.from;

 var to = req.params.to;

 cachefizzbuzz.fizzBuzzRange(from, to, function(data) {

 res.send(data);

 });

});

Because a database call is used in the implementation of this API, the code must
use a callback function to make the res.send(data) call because the database call
is asynchronous.

c. Save the server.js file.

To implement the new API, this exercise will not follow a strict, test-driven approach due to time
constraints. Instead, you’ll focus on the requirements to test code by invoking a remote service.

The application needs to perform two actions against the database:

 Search for results for a given range

 Save the result for a calculated range

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

10

d. Add the following code above the line of code starting with modules.export

in the file cachefizzbuzz.js. This code implements the cache functionality.

CacheFizzBuzz.prototype.fizzBuzzRange = function(start, end, callback) {

 var self = this;

 var parms = {

 key : [start, end],

 include_docs : true

 };

 self._Cloudant.view('fb', 'range', parms, function(err, body) {

 self._processDBResult(err, body, start, end, callback);

 });

};

CacheFizzBuzz.prototype._dbStoreCalculatedResult = function(data) {

 this._Cloudant.insert(data);

};

CacheFizzBuzz.prototype._processDBResult = function(err, body, start,

end,

 callback) {

 var fromDB = false;

 var data = {};

 if ((!err) && (body.rows.length > 0)) {

 delete body.rows[0].doc._id;

Calls to external services need to use asynchronous function calls in
JavaScript to avoid blocking the user thread.

There are a number of ways to handle asynchronous calls in JavaScript.
Passing an anonymous function as a parameter is a common approach,
however this can be problematic to test. Having deeply nested stack of
callbacks can also make code difficult to understand and maintain. To
overcome this problem one approach is to create functions to handle callbacks
outside the asynchronous calls1. This way they can be tested individually.

asyncCall(p1, p2, function(err, data) {

 <implementation of callback function>

});

becomes:

function cb(err, data) {

 <implementation of callback function>

}

….

asyncCall(p1, p2, cb);

With this implementation the callback function 'cb' can be unit tested without
the 'aysnCall' being invoked. If 'asynCall is a call to a remote server, then we
can now test how our code handles the response without any calls to a remote
server.

Note: JavaScript Promises provide a better way to handle asynchronous
behavior, but to keep the code easier to follow for non-JavaScript developers
they are not used in this exercise.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

11

 delete body.rows[0].doc._rev;

 data = body.rows[0].doc;

 } else {

 data = {

 "from" : start,

 "to" : end,

 "result" : this._fizzbuzz.convertRangeToFizzBuzz(start, end)

 };

 if (!err) {

 this._dbStoreCalculatedResult(data);

 }

 }

 callback(data);
};

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

12

Implement the tests for the cachefizzbuzz code (optional)

Testing the previous code requires that you isolate the calls to the database and ensure that
they are not executed. To do this, use mocks and stubs from Sinon.JS.

To test the dbStoreCalculatedResult() function, check that the Cloudant function is called with
the correct parameters. Unit testing should not check that a document was created in the
database.

When you test the function, the call to coudant.insert() should not be made. Sinon.JS provides
stub and mock functionality to replace the call, but it allows the test to verify that the call will be
correctly made when it’s running in production mode.

1. Add the following code to the cachefizzbuzz.test.js file in the test folder:

var testResult1 = {

 "from" : "1",

 "to" : "20",

 "result" : ["1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz",

"Buzz",

 "11", "Fizz", "13", "14", "FizzBuzz", "16", "17", "Fizz",

"19", "Buzz"]

};

describe("CacheFizzbuzz", function() {

 var f = new CacheFizzBuzz("http://user:password@localhost/fizzbuzz");

 describe("dbStoreCalculatedResult()", function() {

 it("calls Cloudant to store the doc", function() {

 var mock = sinon.mock(f._Cloudant);

 mock.expects("insert").withArgs(testResult1).once();

 f._dbStoreCalculatedResult(testResult1);

 mock.verify();

 mock.restore();

 });

 });

 // remaining tests go above here

 });

This test uses the mock function of Sinon.JS. The _Cloudant object is mocked, so all
calls will be captured by the mock. You then set an expectation that the insert function
will be called one time with a given set of FizzBuzz results.

After the mock and expectation are configured, the function being tested is called. Then,
you ask the mock to verify that all expectations are met. At the end of the test, you
restore the _Cloudant object to remove the mock.

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

13

2. Add the following code to the cachefizzbuzz.test.js file above the line “remaining

tests go above here”:

describe("fizzBuzzRange()", function() {

 var cbFunction = function(data) {

 };

 it("calls Cloudant to get record from the fb/range view in DB",

 function() {

 var stub = sinon.stub(f._Cloudant, "view");

 f.fizzBuzzRange("1", "20", cbFunction);

 expect(stub.withArgs('fb', 'range', {

 include_docs : true, key : ["1", "20"]

 }, sinon.match.any).calledOnce).to.be

 .eql(true,

 "Expected cloudant.view to be called only once with correct

parameters");

 f._Cloudant.view.restore();

 });

 });

The code above tests the fizzBuzzRange() function. This function asks the database for
any stored results for the range that is specified by the start and end input parameters.

The returned results are then passed to the _processDBResult() function. To test the
function, you provide a fake callback function cbFunction and use the stub feature of
Sinon.JS to ensure that no call to Cloudant is made. Unlike the mock, the expectations
are tested after the function being tested is called. The anonymous function that is
passed as the callback function to the cloudant view function call can be ignored in the

test by using sinon.match.any.

The final part to test is the function that processes the return from the Cloudant.view call.
This function should look at the returned results. If a document is found to match the
input key, the result should be returned. If there is no match, the result must be
calculated by using the functionality that is implemented in the previous exercise. The
result must be stored in the database before the result is returned.

3. Create the tests by adding more test data. Under the definition of test1, add the following
code:

var testResult2 = {

 "from" : "2",

 "to" : "21",

 "result" : ["2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz",

 "11", "Fizz", "13", "14", "FizzBuzz", "16", "17", "Fizz",

"19", "Buzz", "Fizz"]

};

var DBResult1 = {

 "total_rows" : 7,

 "offset" : 6,

 "rows" : [{

 "id" : "35523244d141fb56c2e6b8dfa58d7fed",

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

14

 "key" : ["1", "20"],

 "value" : null,

 "doc" : {

 "_id" : "35523244d141fb56c2e6b8dfa58d7fed",

 "_rev" : "1-a0337a71e877726cb8fda7d6ceeb2bfc",

 "from" : "1",

 "to" : "20",

 "result" : ["1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz",

 "Buzz", "11", "Fizz", "13", "14", "FizzBuzz", "16", "17",

"Fizz",

 "19", "Buzz"]

 }

 }]

};

var DBResult2 = {

 "total_rows" : 7,

 "offset" : 7,

 "rows" : []

};

There are 3 test scenarios to cover:

 Results are found in the database

 No results are found in the database

 Database returns an error

4. Add the following code below the previous test but above the line “remaining tests go
above here”:

 describe("processDBResult()", function() {

 var cbFunction = sinon.spy();

 var fizzBuzzSpy = null;

 beforeEach(function() {

 fizzBuzzSpy = sinon.spy(f._fizzbuzz, "convertRangeToFizzBuzz");

 });

 afterEach(function() {

 cbFunction.reset();

 f._fizzbuzz.convertRangeToFizzBuzz.restore();

 });

 it("processes the results from Cloudant with a valid result set",

 function() {

 var storeResultsSpy = sinon.spy(f, "_dbStoreCalculatedResult");

 f._processDBResult(false, DBResult1, "1", "20", cbFunction);

 expect(cbFunction.withArgs(testResult1).calledOnce).to.be

 .eql(true, "Expected processDBResult to parse DB return");

 expect(fizzBuzzSpy).callCount(0);

 expect(storeResultsSpy).callCount(0);

 f._dbStoreCalculatedResult.restore();

 });

 it("calculates the results when no results found then saves to DB",

Exercise 6a: Adding a service Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

15

 function() {

 storeResultsStub = sinon.stub(f, "_dbStoreCalculatedResult");

 f._processDBResult(false, DBResult2, "2", "21", cbFunction);

 expect(cbFunction.withArgs(testResult2).calledOnce).to.be

 .eql(true,"Expected calculated result when no data from DB");

 expect(fizzBuzzSpy.withArgs("2", "21").calledOnce).to.be

 .eql(true, "convertRangeToFizzBuzz should be called to

calculate results");

 expect(storeResultsStub.withArgs(testResult2).calledOnce).to.be

 .eql(true, "Expect calculated restuls to be stored in DB");

 f._dbStoreCalculatedResult.restore();

 });

 it("calculates results when DB error,but doesn't store results",

 function() {

 storeResultsSpy = sinon.spy(f, "_dbStoreCalculatedResult");

 f._processDBResult(true, DBResult1, "1", "20", cbFunction);

 expect(cbFunction.withArgs(testResult1).calledOnce).to.be

 .eql(true, "Expected processDBResult create empty result with

DB error");

 expect(fizzBuzzSpy.withArgs("1", "20").calledOnce).to.be

 .eql(true, "convertRangeToFizzBuzz should be called to

calculate results");

 expect(storeResultsSpy).callCount(0);

 f._dbStoreCalculatedResult.restore();

 });

 });

To avoid repetition in tests, the beforeEach and afterEach hook functions are used to set
up the spies and stubs used in each test.

All the tests should now pass.

This exercise should give you a good idea of how a unit test can be used when services
are used. Because unit testing is a complex topic, we’ve provided only a short example.

