

Getting Started with IBM Bluemix

Hands-On Workshop

Exercise 5d: Adding a REST API

and Deploying to Bluemix

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

2

Adding the REST API and deploying to Bluemix

Now that the FizzBuzz functionality is created, it needs to be exposed as a REST API. The
REST API endpoint will respond to an HTTP GET request that is sent to:

http(s)://<host>/fizzbuzz_range/:from/:to

1. Implement a Node.js server by using the Express.js framework:

a. Create a new file named server.js in the project directory and add the following

code to the file:

var express = require("express");

var app = express();

var server_port = 3000;

var server_host = "localhost";

var server = app.listen(server_port, server_host, function () {

 var host = server.address().address;

 var port = server.address().port;

 console.log("Example app listening at http://%s:%s", host, port);

});

2. Because the application requires the Express.js framework, install it and add it to the

packages.json file. Use the command npm install:

a. In the Terminals view, enter Ctrl+C to stop the Mocha tests.

b. Enter the following command:

npm install express –save

c. Refresh the Eclipse content by selecting the project name in Project Explorer view

and then pressing F5.

3. Implement the REST API:

a. Enter the following code after the var app = express(); line:

var FizzBuzz = require("./fizzbuzz");

app.get("/fizzbuzz_range/:from/:to", function (req, res) {

 var fizzbuzz = new FizzBuzz();

 var from = req.params.from;

 var to = req.params.to;

 res.send({

 from: from,

 to: to,

 result: fizzbuzz.convertRangeToFizzBuzz(from, to)

 });

});

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

3

4. Test the API:
a. Start the NodeJS server by entering the following command in the Terminals view:

npm start

You should see a response similar to this output:

npm start

> fizzbuzz-w3@0.0.0 start /Users/binnes/git/fizzbuzz-w3

> node server.js

Example app listening at http://127.0.0.1:3000

5. Test the API in a browser or command line:

a. Enter http://localhost:3000/fizzbuzz_range/1/20 into a browser. You

should see the following text in the browser:

Tip: Instead of testing the API with a browser, you can use the command-line tool
cURL:

curl -i http://localhost:3000/fizzbuzz_range/1/20

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: application/json; charset=utf-8

Content-Length: 150

ETag: W/"96-VBtwqT0jYW1L/R6kdGqqKg"

Date: Mon, 22 Jun 2015 17:43:01 GMT

Connection: keep-alive

{"from":"1","to":"20","result":["1","2","Fizz","4","Buzz","Fizz","7","8",

"Fizz","Buzz","11","Fizz","13","14","FizzBuzz","16","17","Fizz","19","Buz

z"]}

b. Enter Ctrl+C to terminate the server.

6. Modify code for Bluemix and Cloud Foundry:

a. Before pushing the code to Bluemix, modify the server.js file to ensure that the

server listens on the host name and port that is specified in the environment
variables. Modify the definitions of the server_port and server_host variables to
use the VCAP_APP_PORT and VCAP_APP_HOST environment variables:

var server_port = process.env.VCAP_APP_PORT || 3000;

var server_host = process.env.VCAP_APP_HOST || "localhost";

b. In the project, create a new file named manifest.yml. Then, enter the following

content and change the name so that it’s unique, such as adding your initials at
the start of the name:

applications:

http://127.0.0.1:3000/

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

4

- name: bi-FizzBuzz

c. Save the file.

d. In the project, create a new file named .cfignore. Then, enter the following

content:

launchConfigurations/

.git/

node_modules/

npm-debug.log

e. Modify the .gitignore file so that it has the following content. Use the Navigator

view to see files that start with a dot.

launchConfigurations/

.project

.settings/

node_modules/

npm-debug.log

f. Commit the change to the master repo by using the Git Staging view.

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

5

Configure a DevOps pipeline to automatically test and deploy code

Now that the REST API is working, you must deploy it to IBM Bluemix. Use the Build and
Deploy capability in IBM Bluemix DevOps services.

1. Log in to Bluemix DevOps services (https://hub.jazz.net) and from the MY
PROJECTS page, select the FizzBuzz project that you created in the previous
sections.

2. Build a DevOps pipeline for the project:
a. Select the BUILD & DEPLOY section of the project.

b. Click ADD STAGE.

c. On the INPUT page, name the stage Build. Leave the rest of the fields as default

values.

d. Click the JOBS tab.

https://hub.jazz.net/

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

6

e. Click ADD JOB and then click Build as the job type.

f. For the Builder Type, select Shell Script and enter the script as shown in the
screen capture below. Leave the other fields as default values.
#!/bin/bash

npm install npm

node_modules/.bin/npm install

g. Click Save to save the stage.

h. Click ADD STAGE to add another stage in the DevOps pipeline.

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

7

i. On the Input tab, name the stage Test. Then, ensure that the Input Type is

Build Artifacts, the Stage is Build, and the Job is Build.

j. On the JOBS tab, click ADD JOB and click Test as the Job Type.

k. In the Test Configuration page, ensure that the type is Simple and enter the script
as shown in the screen capture.

#!/bin/bash

ARGS=($@)

node_modules/.bin/mocha ${ARGS[*]}

l. Save the stage.

m. Add a third stage and name it Deploy. Then, ensure that the Input Type is Build

Artifacts, the Stage is Build, and the Job is Build.

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

8

n. On the JOBS tab, add a job of type Deploy. Use the default values.

#!/bin/bash

cf push "${CF_APP}"

view logs

#cf logs "${CF_APP}" –recent

o. Save the stage.

p. Start a new build by clicking Run on the Build stage.

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

9

You should see the Build stage start to run. After it completes, the Test stage should
automatically run and then finally the Deploy stage will run.

q. Click the application URL to launch the application. There is no home page set.

However, modify the URL by adding /fizzbuzz_range/1/50 to request the

range from 1 to 50.

The code is not yet complete.

A bug in the code was just delivered. Part of the skill of testing is to know what to
test, and in this exercise, a common JavaScript error was not tested for.

If you test for the range 9 – 50, you get no results.

This occurs because of the difference between comparing numbers and
comparing strings, for example:

 9 < 50 is true for numbers

 "9" < "50" is false for strings

As part of the tests, ensure the correct type of comparison is taking place.

Exercise 5d: Adding the REST API Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

10

Some of the tests are not passing the same parameter types as the REST API
call. The test is passing a number, but the API call is passing a string.

r. Rewrite the test for convertRangeToFizzBuzz to use string parameters. Also use a

range that will fail a string comparison but pass a number comparison:

 describe("convertRangeToFizzBuzz()", function() {
 it("returns in correct order", function() {

 expect(f.convertRangeToFizzBuzz("1", "3")).to.be.eql(["1",

"2", "Fizz"]);

 });

 it("applies FizzBuzz to every number in the range", function()

{

 var spy = sinon.spy(f, "convertToFizzBuzz");

 f.convertRangeToFizzBuzz("9", "50");

 for (var i = 9; i <= 50; i++) {

 expect(spy.withArgs(i).calledOnce).to.be.eql(true,

"Expected convertToFizzBuzz to be called with " + i);

 }

 f.convertToFizzBuzz.restore();

 });

 });

The test called “applies FizzBuzz to every number in the range test” is now failing.

s. To fix the problem, ensure that the convertToFizzBuzz function is using numbers

not strings:

FizzBuzz.prototype.convertRangeToFizzBuzz = function(start, end) {

 var result = [];

 var from = parseInt(start);

 var to = parseInt(end);

 for (var i = from; i <= to; i++) {

 result.push(this.convertToFizzBuzz(i));

 }

 return result;

};

t. From the Git Staging view, stage, comment, and commit and push the changes.

Then, quickly switch to the IBM Bluemix DevOps Services console for your project
in the Build & Deploy settings. You should see a build, test, and deploy being
automatically run.

