

Getting Started with IBM Bluemix

Hands-On Workshop

Exercise 5c: Test-driven development

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

2

Test-driven development

Implement the divisibleBy function

To implement the divisibleBy funtion, you generate the first test that the implementation must
pass. Solving the problem requires a function to discover whether one number is divisible by
another number, so the first test will check whether 3 is divisible by 3.

Before you write the test, you’ll add another test framework: Chai. Chai is a behavior-driven
development (BDD) and test-driven development (TDD) assertion library for Node.js and a
browser that can be paired with any JavaScript testing framework. Chai provides the test
capability to say "I expect this to be true" or "this should be true."

Before you write a test, install Chai and then configure Mocha to use Chai:

1. Install and configure Chai:
a. In the Terminals view, enter the following command:

 npm install chai --save-dev

b. Select the project name in Project Explorer and press F5 to refresh the Eclipse
project content.

c. Create a new file in the test folder named support.js and add the following

content:

var chai = require("chai");

global.expect = chai.expect;

d. Create a new file in the test folder named mocha.opts and add the following

content:

--require test/support

e. Save both files.

The files configure Mocha to use the expect functionality from Chai.

2. Create the first test:

a. Create a new file in the test folder named fizzbuzz.test.js by right-clicking

the test folder in the Project Explorer view and then click New > File.

b. Enter the following code to get access to the code that you are about to write to
pass the test:

var FizzBuzz = require("../fizzbuzz.js");

describe("Fizzbuzz", function() {

 var f = new FizzBuzz();

 describe("divisibleBy()", function() {

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

3

 it("when divisible", function() {

 expect(f.divisibleBy(3, 3)).to.be.eql(true);

 });

 });

});

The first test is now complete, so you can write the code that’s needed to pass the test.

Rather than having to manually run the tests, you can specify an option to continually run
Mocha. Therefore, every time that a file is changed, the tests are automatically run. Use

the -w command-line option to run tests continually.

3. Configure Mocha to continually run tests:

a. In the Terminals view, run the following command:

o Mac and Linux: node_modules/.bin/mocha -w

o Windows: node_modules\.bin\mocha –w

You will see that the tests are failing because of an error:
Error: Cannot find module '../fizzbuzz.js'

b. In the root of the project, create the file fizzbuzz.js.

c. Add the following code to configure the fizzbuzz.js file:

var FizzBuzz = function (){

};

module.exports = FizzBuzz;

d. Save the file. You should now see the tests run with the following result:

Fizzbuzz

 divisibleBy()

 1) when divisible

 jshint

 ✓ should pass for working directory (99ms)

 1 passing (114ms)

 1 failing

 1) Fizzbuzz divisibleBy() when divisible:

 TypeError: Object [object Object] has no method 'divisibleBy'

 at Context.<anonymous> (test/fizzbuzz.test.js:8:16)

Now, you can implement the divisibleBy function, but you should write only the minimal
amount of code to pass the written test. This could be as simple as returning true
because 3 is divisible by 3.

4. Implement the divisibleBy function to pass the first test:

a. Add the following code to the fizzbuzz.js file above the line that starts with

“module.exports”:

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

4

FizzBuzz.prototype.divisibleBy = function(number, divisor) {

 return true;

};

b. Save the file. You should now see all your tests pass:

Fizzbuzz

 divisibleBy()

 ✓ when divisible

 jshint

 ✓ should pass for working directory (61ms)

 2 passing (67ms)

This code is clearly not correct, but it does pass the test. Another test is needed to test
when the divisibleBy function should return false. Having the additional test will also
require the correct implementation of the divisibleBy function.

5. Write the test and implement the code when divisibleBy should return false:

a. In the fizzbuzz.test.js file, add code beneath the existing test to test whether

2 is divisible by three. The section of the test for the divisibleBy function should
now look like this:

 describe("divisibleBy()", function() {
 it("when divisible", function() {

 expect(f.divisibleBy(3, 3)).to.be.eql(true);

 });

 it("when not divisible", function() {

 expect(f.divisibleBy(3, 2)).to.be.eql(false);

 });

 });

b. Save the file. Now, you should have a failing test again.

c. Implement the divideBy function with the following code. There is a deliberate

coding error, so copy the code below as shown:

FizzBuzz.prototype.divisibleBy = function(number, divisor) {

 return number % divisor = 0;

};

Three errors are reported. You’ve broken the divideBy test for 3 divided by 3: the new
test doesn't pass, and you also have JSHint complaining of bad JavaScript code.
Notice that Eclipse is also reporting the JSHint issues in the problem panel.

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

5

d. Replace the code with the following new code. There is still a deliberate mistake.

FizzBuzz.prototype.divisibleBy = function(number, divisor) {

 return number % divisor == 0;

};

The functional tests pass, but JSHint is still complaining of bad JavaScript code. This
is because in JavaScript there are two comparison operators:

 == does type coercion

 === does not do type coercion

Type coercion occurs when a variable is automatically converted to a different type
when required, such as changing a number to a string.

e. When you use a static number, use the === operator. Replace the code again to

use this code:

FizzBuzz.prototype.divisibleBy = function(number, divisor) {

 return number % divisor === 0;

};

All the tests now pass.

The first function is now implemented and all the tests pass. This is a good time to
commit code:

6. Commit the code and push to the master repo:

a. In the Git Staging view, select the files in the Unstaged Changes window and drag
to the Staged Changes window. Add a comment and then click Commit and
Push.

Tip: It’s better to split the configuration of Chai and Mocha into separate commits.

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

6

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

7

Implement the convertToFizzBuzz function

Now that you have a function to check whether a number is divisible by 3 or 5, you must
implement a function to convert a number to its FizzBuzz value.

1. Implement the first test for convertToFizzBuzzZ:

a. In the fizzbuzz.test.js file, add the following new test block after the

divisibleBy block:

 describe("divisibleBy()", function() {
 it("when divisible", function() {

 expect(f.divisibleBy(3, 3)).to.be.eql(true);

 });

 it("when not divisible", function() {

 expect(f.divisibleBy(3, 2)).to.be.eql(false);

 });

 });

 describe("convertToFizzBuzz()", function() {

 });

b. Add the first test to check that 3 is converted to “Fizz”:

describe("convertToFizzBuzz()", function() {

 it("when divisible by 3", function() {

 expect(f.convertToFizzBuzz(3)).to.be.eql("Fizz");

 });

 });

c. In the fizzbuzz.js file, add a new function prototype for convertToFizzBuzz and

add the code that is required to pass the first test:

FizzBuzz.prototype.convertToFizzBuzz = function(number) {

 return "Fizz";

};

d. Add another test for Fizz to test that 6 also returns “Fizz” and then add tests to

check that 5 and 10 return “Buzz” by updating the test code in the

fizzbuzz.test.js file:

describe("convertToFizzBuzz()", function() {

 it("when divisible by 3", function() {

 expect(f.convertToFizzBuzz(3)).to.be.eql("Fizz");

 expect(f.convertToFizzBuzz(6)).to.be.eql("Fizz");

 });

 it("when divisible by 5", function() {

 expect(f.convertToFizzBuzz(5)).to.be.eql("Buzz");

 expect(f.convertToFizzBuzz(10)).to.be.eql("Buzz");

 });

});

e. Implement the functionality in the fizzbuzz.js file to pass the tests by using the

following code:

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

8

FizzBuzz.prototype.convertToFizzBuzz = function(number) {

 if (this.divisibleBy(number, 3)) {

 return "Fizz";

 }

 if (this.divisibleBy(number, 5)) {

 return "Buzz";

 }

};

All the tests should now pass.

f. Add tests to check for “FizzBuzz” and a number when that number is not divisible

by either 3 or 5. Use the following code for the tests:

 describe("convertToFizzBuzz()", function() {
 it("when divisible by 3", function() {

 expect(f.convertToFizzBuzz(3)).to.be.eql("Fizz");

 expect(f.convertToFizzBuzz(6)).to.be.eql("Fizz");

 });

 it("when divisible by 5", function() {

 expect(f.convertToFizzBuzz(5)).to.be.eql("Buzz");

 expect(f.convertToFizzBuzz(10)).to.be.eql("Buzz");

 });

 it("when divisible by 15", function() {

 expect(f.convertToFizzBuzz(15)).to.be.eql("FizzBuzz");

 expect(f.convertToFizzBuzz(30)).to.be.eql("FizzBuzz");

 });

 it("when not divisible by 3, 5 or 15", function() {

 expect(f.convertToFizzBuzz(4)).to.be.eql("4");

 expect(f.convertToFizzBuzz(7)).to.be.eql("7");

 });

 });

g. To get the tests to pass, complete the convertToFizzBuzz function. Use the

following code:

FizzBuzz.prototype.convertToFizzBuzz = function(number) {

 if (this.divisibleBy(number, 15)) {

 return "FizzBuzz";

 }

 if (this.divisibleBy(number, 3)) {

 return "Fizz";

 }

 if (this.divisibleBy(number, 5)) {

 return "Buzz";

 }

 return number.toString();

};

All the tests should now pass, and the function is complete.

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

9

h. Commit the code. Use the Git Staging view to stage, add a comment, and then

commit and push the changes to the master repo.

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

10

Implement convertRangeToFizzBuzz (introduces Sinon.JS)

The next stage to implementing FizzBuzz is to be able to convert a range of numbers, not just a
single number. Ensure that the tests for this function do not repeat the tests for
convertToFizzBuzz. You already have tests for that.

The tests need to:

 Verify that when a range is converted, the results are returned in the correct order

 Verify that for a range, you call the convertToFizzBuzz function once for each
member of the array

To enable this type of testing, an additional testing capability is needed. You’ll use Sinon.JS to
provide this capability. Sinon.JS provides a library to help you unit test your code. It supports
spies, stubs, and mocks. The library supports multiple browsers and can run on a server using
Node.js.

1. Add Sinon.JS and configure the test framework to use it:
a. In the Terminals view, enter Ctrl+C to stop the Mocha tests. On Windows, answer

Y to terminate batch job.

b. Enter the following command in the Terminals window:

npm install sinon --save-dev

npm install sinon-chai --save-dev

c. Refresh the Eclipse project by selecting the project name in the Project Explorer

view and pressing F5.

d. In the Terminals view, restart the Mocha -w command.

Tip: Use the up arrow to scroll through previous commands.

Mac and Linux: node_modules/.bin/mocha -w

Windows: node_modules\.bin\mocha –w

e. Modify the support.js file in the test folder to enable Chai to use Sinon.JS:

var chai = require("chai");

var sinonChai = require("sinon-chai");

chai.use(sinonChai);

global.expect = chai.expect;

2. Add the test for the convertRangeToFizzBuzz function:

a. Add the Describe function below that tests for the convertToFizzBuzzz function:

 describe("convertRangeToFizzBuzz()", function() {
 });

b. Add a test to ensure that the results are returned in the correct order:

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

11

 describe("convertRangeToFizzBuzz()", function() {
 it("returns in correct order", function() {

 expect(f.convertRangeToFizzBuzz(1, 3)).to.be.eql(["1", "2",

"Fizz"]);

 });

 });

c. Implement the function to satisfy the test by adding the following code:

FizzBuzz.prototype.convertRangeToFizzBuzz = function(start, end) {

 return ["1", "2", "Fizz"];

};

d. Add a test to ensure that the convertRangeToFizzBuzz is called the correct

number of times for a given range and is called once for each number in the
range. To do this, you use Sinon.JS to spy on the invocation of the

convertToFizzBuzz function. At the top of the fizzbuzz.test.js file, add the

following line of code to make Sinon.JS available:

var sinon = require("sinon");

The code for the convertRangeToFizzBuzz tests is now:

 describe("convertRangeToFizzBuzz()", function() {
 it("returns in correct order", function() {

 expect(f.convertRangeToFizzBuzz(1, 3)).to.be.eql(["1", "2",

"Fizz"]);

 });

 it("applies FizzBuzz to every number in the range", function() {

 var spy = sinon.spy(f, "convertToFizzBuzz");

 f.convertRangeToFizzBuzz(1, 50);

 for (var i = 1; i <= 50; i++) {

 expect(spy.withArgs(i).calledOnce).to.be.eql(true, "Expected

convertToFizzBuzz to be called with " + i);

 }

 f.convertToFizzBuzz.restore();

 });

 });

e. Implement the function to pass the tests by adding the following code:

FizzBuzz.prototype.convertRangeToFizzBuzz = function(start, end) {

 var result = [];

 for (var i = start; i <= end; i++) {

 result.push(this.convertToFizzBuzz(i));

 }

 return result;

};

The implementation of FizzBuzz is now complete because the code passes all the
tests.

Exercise 5c: Test-driven development Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

12

f. Commit the code by using the Git Staging view to stage, provide a comment, and

then commit and push the changes to the master repository.

