

Getting Started with IBM Bluemix

Hands-On Workshop

Exercise 5b: Setting up Development Tooling

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

2

Setting up development tooling

Using appropriate developer tooling with features to automatically check for errors, provide code
assist, and so on can make you more productive and help identify possible problems.

You’ll use the new project that you created in the previous section.

The first step is to ensure the JavaScript tooling is enabled and the test framework is created.

1. Create the JavaScript project:
a. In the Terminals view, change to the directory that contains the project:

 Mac and Linux default: cd <user home>/git/<project name>

 Windows default: cd <user home>\git\<project name>

If you want to verify where your project is located, right-click the project name in the
Project Explorer view and then click Properties.

Note the project location on the Resources tab:

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

3

b. In the Terminals window, run the npm init command and answer the prompts as

shown below.

 Name: provide a unique name for your project

 Version: 0.0.0

 Description: REST API to calculate FizzBuzz value for a give
range

 Entry point: server.js

 Test command: node_modules/.bin/mocha
 Git repository: press enter to accept the default value

 Keywords: leave this blank

 Author: enter your name

 License: press enter to accept the default value

Windows: Use the forward slash (/) when specifying the test command.

If the Terminals window is too small, double-click the tab to enlarge it to a full screen.
Double-clicking again will return it to its original size and location.

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

4

c. To move the created files into Eclipse, right-click the project name in the Project
Explorer view and click Refresh or press F5.

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

5

d. If the wizard truncated the test script to mocha, open the package.json file in the

Eclipse editor and change it back to node_modules/.bin/mocha.

e. Tests are expected to be in a directory named test, so create a test directory:

i. Right-click the project name in the Project Explorer view and click New > Folder.

ii. Name the folder test and then click Finish.

f. To be able to run tests, install the Mocha framework:

i. In the Terminals view, enter npm install mocha --save-dev

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

6

ii. Select the project name in the Project Explorer and click Refresh the project in
Eclipse to display the new files.

g. Test that everything works as expected by running a test:

i. In the Terminals view, enter npm test

Note that the test framework ran even though there are no tests defined.

JSHint is a lint program for JavaScript. It provides static analysis of code. It’s a good
practice to have this running in your tooling. Many development teams also include it as
part of their automated test suite.

h. Run JSHint from Mocha:

i. In the Terminals view, enter the following command:

npm install mocha-jshint --save-dev

ii. Select the test directory of the project in the Project Explorer view and then right-

click and click New > File. Name the file jshint.test.js.

iii. In the file, enter the following content and then save the file by clicking File >
Save or use these commands:

Windows and Linux: Ctrl+S
Mac: Cmd+S:

require('mocha-jshint')();

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

7

iv. Rerun the tests by entering the following command in the Terminals view:

npm test

There are many errors from the imported modules in the node_modules directory. You

do not control this is code, so it should be excluded from tests.

i. Configure JSHint to ignore the files by using a .jshintignore file:

i. Create a .jshintignore file by right-clicking the project name in the Project

Explorer view and clicking New > File.

ii. Add the following content to the file:

node_modules

test

iii. In the Terminals view, rerun the tests: npm test

JSHint is now enabled in the test suite, but ideally the code editor should provide
feedback from the problems.

JSHint is included in Eclipse, but you must configure it.

j. Enable JSHint in Eclipse:

i. Right-click the project name in the Project Explorer view and click Properties.

ii. In the dialog, click JSHint.

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

8

iii. Click Add next to the Enable JSHint for these files and folders box.

iv. Accept the defaults as shown above and click OK.

v. Click Add next to the But exclude these files and folders from validation box.

vi. Click All files and then select in folder and add the node_modules folder. Select

the include all subfolders checkbox.

vii. Repeat the previous step to exclude the content of the test folder.

viii. Click OK to make the changes and close the dialog.

Exercise 5b: Setting up development tooling Getting Started with IBM Bluemix

Copyright IBM Corporation 2015. All rights reserved.

9

The project is now ready to implement the REST API, so now is a good time to commit
changes to the Git repository (repo).

There is some debate about whether dependencies should be checked in or re-fetched at
build time. To reduce the amount of traffic that you need to push to the Git repo for this

exercise, you will exclude the dependencies in node_modules.

k. Update the Git configuration and then commit and push changes to the Git repo:

I. Switch to the Navigator view to see files that start with a period (.)

II. Double-click the .gitignore file to edit it and add the node_modules directory

to the file. Then, save the file: Ctrl+S or Cmd+S.

III. Right-click the project name and click Team > Commit. Click the link at the bottom
right of the dialog to open the Git Staging view.

IV. Drag the 4 files from the Unstaged Changes window to the Staged Changes
window. Then, enter a commit message.

V. Click Commit and Push.

VI. Verify that the commit completed successfully and then close the confirmation
dialog.

